The role of Gαq/Gα11 signaling in intestinal epithelial cells
نویسندگان
چکیده
Intestinal homeostasis and the coordinated actions of digestion, absorption and excretion are tightly regulated by a number of gastrointestinal hormones. Most of them exert their actions through G-protein-coupled receptors. Recently, we showed that the absence of Gαq/Gα11 signaling impaired the maturation of Paneth cells, induced their differentiation toward goblet cells, and affected the regeneration of the colonic mucosa in an experimental model of colitis. Although an immunohistochemical study showed that Gαq/Gα11 were highly expressed in enterocytes, it seemed that enterocytes were not affected in Int-Gq/G11 double knock-out intestine. Thus, we used an intestinal epithelial cell line to examine the role of signaling through Gαq/Gα11 in enterocytes and manipulated the expression level of Gαq and/or Gα11. The proliferation was inhibited in IEC-6 cells that overexpressed Gαq/Gα11 and enhanced in IEC-6 cells in which Gαq/Gα11 was downregulated. The expression of T-cell factor 1 was increased according to the overexpression of Gαq/Gα11. The expression of Notch1 intracellular cytoplasmic domain was decreased by the overexpression of Gαq/Gα11 and increased by the downregulation of Gαq/Gα11. The relative mRNA expression of Muc2, a goblet cell marker, was elevated in a Gαq/Gα11 knock-down experiment. Our findings suggest that Gαq/Gα11-mediated signaling inhibits proliferation and may support a physiological function, such as absorption or secretion, in terminally differentiated enterocytes.
منابع مشابه
Epidermal loss of Gαq confers a migratory and differentiation defect in keratinocytes
G-protein coupled receptors (GPCRs), which activate heterotrimeric G proteins, are an essential class of transmembrane receptors that are responsible for a myriad of signaling events in normal and pathologic conditions. Two members of the G protein family, Gαq and Gα11, activate one of the main GPCR pathways and function as oncogenes by integrating mitogen-stimulated signaling cascades that are...
متن کاملCalcium signaling in rat pancreatic acinar cells: a role for Gαq, Gα11, and Gα14.
Stimulus-secretion coupling in the pancreatic acinar cell is initiated by the secretagogues CCK and ACh and results in the secretion by exocytosis of the contents of zymogen granules. A key event in this pathway is the G protein-activated production of second messengers and the subsequent elevation of cytosolic-free Ca2+. The aim of this study was therefore to define the heterotrimeric G protei...
متن کاملRequirement of Gαq/Gα11 Signaling in the Preservation of Mouse Intestinal Epithelial Homeostasis
BACKGROUND & AIMS Proliferation, differentiation, and morphogenesis of the intestinal epithelium are tightly regulated by a number of molecular pathways. Coordinated action of intestine is achieved by gastrointestinal hormones, most of which exert these actions through G-protein-coupled receptors. We herein investigated the role of Gαq/11-mediated signaling in intestinal homeostasis. METHODS ...
متن کاملSoluble uric acid induces inflammation via TLR4/NLRP3 pathway in intestinal epithelial cells
Objective(s): Hyperuricemia is a risk for cardiovascular and metabolic diseases, but the mechanism is ambiguous. Increased intestinal permeability is correlated with metabolic syndrome risk factors. Intestinal epithelial cells play a pivotal role in maintaining intestinal permeability. Uric acid is directly eliminated into intestinal lumen, however, the mechanism and e...
متن کاملThe Gαq/11 Proteins Contribute to T Lymphocyte Migration by Promoting Turnover of Integrin LFA-1 through Recycling
The role of Gαi proteins coupled to chemokine receptors in directed migration of immune cells is well understood. In this study we show that the separate class of Gαq/11 proteins is required for the underlying ability of T cells to migrate both randomly and in a directed chemokine-dependent manner. Interfering with Gαq or Gα11 using dominant negative cDNA constructs or siRNA for Gαq causes accu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2018